Systematic review of economic evaluations of dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes mellitus.

Lizán L.¹, Aceituno S.¹, Franch J.², Pérez A.³, Granell M.⁴, Fuster E.⁴

¹ Outcomes'10, Castellón, Spain
² Centro de Atención Primaria Drassanes, Área Básica de Salud de Raval Sur, Barcelona, Spain
³ Servicio de Endocrinología y Nutrición, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
⁴ Novartis, Barcelona, Spain

Background

- Type 2 diabetes mellitus (T2DM) is a chronic disease, requiring continuous medical care and therapeutic actions to prevent complications and to improve health outcomes of patients¹, with a high prevalence and a relevant economic impact. In Spain, the total direct annual cost of diabetes mellitus (DM) represents an 8.2% of the total Spanish health expenditure (the 90% corresponds to T2DM). Antidiabetic drugs costs imply a 15% of the total cost, and the cost of complications is around 37% of the total².
- The increase use of newer and more expensive drugs such as glucagon-like
- Key cost-effectiveness results for each study are included in figure 2.

Figure 2. Cost-effectiveness result of each study

	Comparator	Intervention	Results	Threshold	
Elgart JF, 2013 Argentina	MET + SU (dose not specified)	MET + Saxagliptin (dose not specified)	ICUR 7,374 \$/QALY ICER 20,490 \$/LYG	Cost-effective	
	Liraglutide (1.2 mg) + MET (1,500 mg)		US\$ 10,335	NA (cost per patient achieving an endpoint)	
Langer J, 2013 United States	Liraglutide (1.8 mg) + MET (1,500 mg)		US\$ 11,755		
	Sitagliptin (100 mg) + MET (1,500 mg)		US\$ 16,858		
Bergenheim K, 2012 United States	MET + Glipizide (dose not specified)	MET + Saxagliptin (dose not specified)	ICUR 1,052 \$/QALY	Cost-effective	
Davies MJ, 2012 United Kingdom	SU (4 mg) + MET	Liraglutide (1.2 mg) + MET	ICUR 9,449 £/QALY		
	SU (4 mg) + MET	Liraglutide (1.8 mg) + MET	ICUR 16,501 £/QALY	Cost-effective (20,000-30,000 £/QALY)	
	Sitagliptin (100 mg) + MET	Liraglutide (1.2 mg) + MET	ICUR 9,851 £/QALY		
	Sitagliptin (100 mg) + MET	Liraglutide (1.8 mg) + MET	ICUR 10,465 £/QALY		
Erhardt W, 2012	MET + Saxagliptin	MET + Sulfonylurea	ICUR 13,931 €/QALY	Cost-effective	
Germany	(dose not specified)	(dose not specified)	ICER 241,896 €/LYG	(authors)	
Granström O, 2012 Sweden	MET (2,000 mg) + SU (14.7 mg)	MET (2,000 mg) + Saxagliptin (5 mg)	ICUR 91,260 SEK/QALY	Cost-effective (500,000 SEK/QALY)	
Guillermin AL, 2012 United States	Sitagliptin (100 mg)	Exenatide (2 mg/week)	LYG: 0.28; QALY: 0.28; Complications costs: US\$ - 2,215	NA (drug cost not	
	Pioglitazone (45 mg)	Exenatide (2 mg/week)	LYG: 0.17; QALY: 0.24; complications costs: US\$ - 933	included)	
Lee WC, 2012 United States	MET (1,000 mg) + Sitagliptin	MET (1,000 mg) + Lira (1.2 mg)	ICUR 37,234 US\$/QALY	Cost offootive	
	MET (1,000 mg) + Sitagliptin	MET (1,000 mg) + Lira (1.8 mg)	ICUR 25,742 US\$/QALY	Cost-effective	

peptide-1 (GLP-1) analogues or dipeptidyl peptidase-4 (DPP-4) inhibitors, with the increasing incidence of T2DM, has a significant economic impact for healthcare systems. Therefore, it is necessary to identify if these agents offer significant advantages over older therapies³.

Objective

• To synthesize and analyze the available information on the therapeutic value of DPP-4 inhibitors for the treatment of T2DM considering their efficiency or cost-effectiveness.

Materials and methods

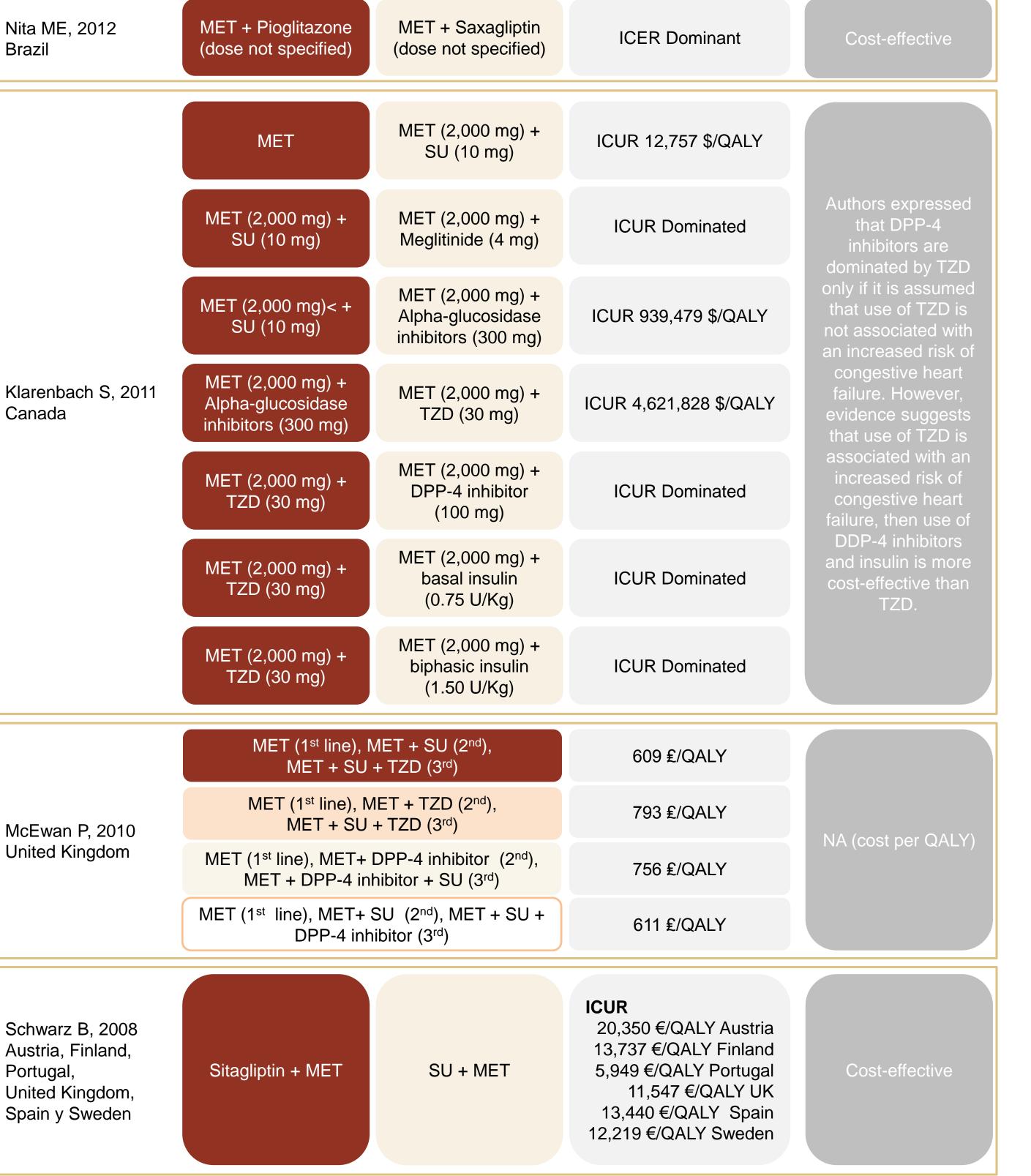
- A systematic literature search in Spanish (MEDES, IBECS) and international (MedLine/PubMed, Cochrane Library, ISI WOK, SCOPUS) databases was performed.
- Eligible studies (published in English or Spanish until June 2013) were economic evaluations comparing costs and clinical benefits of two alternatives for T2DM treatment including DPP-4 inhibitors. Studies providing data concerning costs and/or disease burden were excluded.

Results

 Of 1,634 publications initially identified, a total of 12 publications were selected for reviewing (Figure 1).

Figure 1. Results of systematic review

References:


- 1 American Diabetes Association. Diabetes Care. 2014;37:14-80.
- 2 Crespo C, et al. Av Diabetol. 2013;29:182-89.

Publications retrie	ved for full text reading: 20	title/abstract: 1,614	Nita ME, 2012 Brazil	
Publicati	ons selected : 12	Excluded: 8		

 Characteristics of selected publications are described in table 1. National Health System perspective was adopted in all publications. One study did not include a sensitivity analysis⁴.

Table 1. Characteristics of selected publications

First author, publication year, country (OCEBM levels of evidence)	istics of selected publications Design, time horizon	Costs, benefits and discount rate
Elgart JF, 2013⁵ Argentina (2b)	 Cost-effectiveness and cost- utility: Discrete-event simulation model (Cardiff diabetes model). 20 years. 	 Direct costs (US\$, 2009): drugs, AEs, macro- and microvascular complications. Benefits: LYG and QALY. Discount rate: 2.5% (costs and henefits)
Langer J, 2013 ⁶ United States (3b)	 Cost-effectiveness: Cost per patient achieving a clinically relevant composite endpoint. 1 year. 	 Discount rate: 3.5% (costs and benefits). Direct costs (US\$, 2012): drugs. Benefits: proportion of patients achieving a clinically relevant composite endpoint (HbA1c<7.0%, no hypoglycaemia and no gain in body weight, based on a published trial).
Bergenheim K, 2012⁷ United States (2b)	 Cost-utility: Discrete-event simulation model (Cardiff Long Term Cost-Utility Model). 5 and 40 years (patient life-time). 	 Discount rate: 0%. Direct costs (US\$, 2009): drugs, macro- and microvascular complications. Benefits: QALY. Discount rate: 3% (costs and benefits).
Davies MJ, 2012⁸ UK (3b)	 Cost-utility: Markov (CORE diabetes model). Patient life-time. 	 Direct costs (£, 2008): drugs, BGSM, macro- and microvascular complications, hypoglycemia. Benefits: QALY. Discount rate: 3.5% (costs and benefits).
Erhardt W, 2012⁹ Germany (1b)	 Cost-effectiveness and cost- utility: Discrete-event simulation model (Cardiff Diabetes Model). 40 years. 	 Direct costs (€, 2009): drugs, AEs, macro- and microvascular complications. Benefits: LYG and QALY. Discount rate: 2.5% (costs and henefits)
Granström O, 2012 ¹⁰ Sweden (2b)	 Cost-effectiveness and cost- utility: Discrete-event simulation model. Patient life-time. 	 Discount rate: 3.5% (costs and benefits). Direct costs (SEK, 2008): drugs, BGSM, macro- and microvascular complications, hypoglycemia. Benefits: LYG and QALY. Discount rate: 3% (costs and benefits).
Guillermin AL, 2012¹¹ United States (3b)	 Cost-effectiveness and cost- utility: Markov model (CORE diabetes model). 35 years. 	 Direct costs (US\$, 2010): macro- and microvascular complications, hypoglycemia. Drug costs were excluded. Benefits: LYG and QALY. Discount rate: 3% (costs and benefits).
Lee WC, 2012 ¹² United States (2b)	 Cost-effectiveness and cost- utility: Markov model (CORE diabetes model. 35 years. 	 Direct costs (US\$, 2011): drugs, BGSM, macro- and microvascular complications, hypoglycemia. Benefits: LYG and QALY. Discount rate: 3% (costs and benefits).
Nita ME, 2012¹³ Brazil (1b)	 Cost-effectiveness and cost- utility: Discrete-event simulation model. Patient life-time. 	 Direct costs (R\$, year not specified) in cost- effectiveness: drugs, AEs (hypoglycemia) and macro- and microvascular complications. Benefits: QALY. Discount rate: 5% (costs and benefits).
Klarenbach S, 2011¹⁴ Canada (1b)	 Cost-utility: Discrete-event simulation model (UKPDS). Patient life-time. 	 Direct costs (\$, 2009): drugs, macro- and microvascular complications. Benefits: QALY. Discount rate: 5% (costs and benefits).
McEwan P, 2010⁴ UK (4)	 Cost-utility: Discrete-event simulation model (Cardiff Diabetes Model). 100 years (patient life-time). 	 Direct costs (£, 2008): drugs, macro- and microvascular complications. Benefits: QALY. Discount rate: 6% at costs and 1.5% at benefits.
Schwarz B, 2008 ¹⁵ Austria, Finland, Portugal, UK, Spain y Sweden (3b)	Cost-utility: Discrete-event	 Discount rate: 0% at costs and 1.0% at benchts. Direct costs (€, 2007): drugs, AEs (hypoglycaemia, weight), macro- and microvascular complications. Benefits: QALY. Discount rate: 3% (costs and benefits) in Sweden/Austria, 3.5% in UK, 5% in Portugal/Finland, and 6% in Spain.

- 3 McIntosh B, et al. Open Med. 2011;5:35-48.
- 4 McEwan P, et al. Diabetes Obes Metab. 2010;12:623-30.
- 5 Elgart JF, et al. Health Econ Rev. 2013;3:11.
- 6 Langer J, et al. J Manag Care Pharm. 2013;19:237-46.
- 7 Bergenheim K, et al. Am J Pharm Benefits. 2012;4:20-28.
- 8 Davies MJ, et al. Diabet. Med. 2012;29:313-20.
- 9 Erhardt W, et al. Clin Drug Investig. 2012;32:189-202.
- 10 Granström O, et al. Prim Care Diabetes. 2012;6:127-36.
- 11 Guillermin AL, et al. J Med Econ. 2012;15:654-63.
- 12 Lee WC, et al. J Med Econ. 2012;15:28-37.
- 13 Nita ME, et al. Rev Assoc Med Bras. 2012;58:294-301.
- 14 Klarenbach S, et al. CMAJ. 2011;183:1213-20.
- 15 Schwarz B, et al. Diabetes Obes Metab. 2008;10:43-55.

NOVARTIS

DPP-4: dipeptidyl peptidase; ICER: incremental cost-effectiveness ratio; ICUR: incremental cost-utility ratio; LYG: life year gained; OCEBM: Oxford Centre for Evidence Based Medicine; QALY: quality adjusted life year; TZD: thiazolidinedione; SU: sulfonylurea; MET: metformin. NA: not applicable.

- Results showed that T2DM therapy with DPP-4 inhibitors and metformin resulted cost-effective compared with sulfonylureas plus metformin in all the countries which were evaluated (Sweden, United Kingdom, Germany, Portugal, Austria, Finland, Spain, USA and Argentina).
- Although DPP-4 inhibitors cost was higher compared with sulfonylureas, DPP-4 inhibitors plus metformin were associated to higher clinical benefits versus sulfonylureas plus metformin in terms of decreasing hypoglycemia incidence and T2DM complications.

Conclusions

• DPP-4 inhibitors added to metformin are a cost-effective alternative compared with sulfonylureas plus metformin in T2DM patients, mainly due to a lower hypoglycemia incidence and T2DM complications.

AEs: adverse events; BGSM: blood glucose self-monitoring; LYG: life years gained; OCEBM: Oxford Centre for Evidence Based Medicine; QALY: quality adjusted life years; UK: United Kingdom.