BURDEN OF DISEASE IN LOW-RISK MYELODYSPLASTIC SYNDROMES IN SPAIN

David Valcárcel,¹ Maria Julia Montoro,¹ Mar Tormo,² Joan Bargay,³ Estela Moreno,⁴ Susana Aceituno,⁵ Alba Bellmunt,⁵ María Soler,⁵ Montserrat Rafel,⁶ Rocio Villarrubia⁶

¹Department of Hematology, Vall d'Hebron Institute of Oncology (VHIO), University Hospital Vall d'Hebron, Barcelona, Spain, ²Department of Hematology, University Hospital Clínico, Instituto de Investigación INCLIVA, Valencia, Spain; ³Department of Hematology, Hospital Son Llatzer, Palma de Mallorca, Spain; ⁴Pharmacy Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; ⁵Outcomes'10, Castellón, Spain; ⁶Hematology, Bristol Myers Squibb, Madrid, Spain

INTRODUCTION

- Myelodysplastic syndromes (MDS) are a group of hematological malignancies characterized by cytopenias (primary anaemia) and an increased risk of progression to acute myeloid leukemia (AML)¹.
- The most common symptoms are usually those related to anaemia, with 50% of patients requiring regular red blood cell transfusions².
- In addition, red blood cell transfusions constitute the main supportive care for patients with MDS after the failure of Erythropoiesis-stimulating agents².
- Red blood cell transfusions provide short-term improvement of symptoms. However, this does not improve health-related quality of life (HRQoL) of patients and results in significant resource consumption².
- The ERASME study included newly diagnosed patients with MDS in Spain. The aim was to assess the impact of transfusion burden on survival and

Cost estimation

- Pharmacological, follow-up, transfusion and acute complications management costs were included:
- Pharmacological cost: treatment strategies and usage rates based on expert opinion were considered (Table 4). In addition, 22.2% of TD patients were considered to have received chelation therapy. Drug costs were extracted from the official database, BotPlusWeb⁹.

Table 4. Treatment strategies for TD and TI patients

Strategies	Drug	TD patient usage	TI patient usage	Resource
Observation	-	11.3%	46.8%	
Support	Erythropoetin	29.3%	29.0%	1
	Darbepoetin	9.3%	11.1%	Experts. 2022
Active treatment	Azacitidine	35.4%	10.8%	
Immunomodulators	Lenalidomide	14.7%	2.3%	
TD: transfusion- dependent; TI:	transfusion- independent	dent	·	

Figure 4. Accumulative cost of LR-MDS

• The mean annual cost per patient with TD was estimated at €43,066

comorbidities in patients with low-risk and intermediate-1 MDS³.

• The ERASME study concluded that transfusion burden is associated with worse survival and increased comorbidity³.

OBJECTIVES

• The aim was to assess the disease burden in low-risk MDS (LR-MDS) patients from the Spanish National Health System (NHS) perspective. In particular, the impact of the disease and transfusion dependence on HRQoL, survival, resource use and costs were estimated.

METHODS

Model structure

- An incidence-based Markov model was developed in Microsoft Excel. This was done using data from the ERASME study³ and the opinion of a panel of experts.
- The number of patients was estimated based on MDS epidemiological data (Table 1).
- Four health states were defined: MDS transfusion-dependent (TD), MDS transfusion-independent (TI), AML, and death (**Figure 1**). A cohort of newly diagnosed LR-MDS patients based on the characteristics of the ERASME study³ entered the model according to transfusion dependence (TD: 21.00%; TI: 79.00%).

Table 1. Estimation of the number of patients

Description	Data (%)	Number	Resource
Population (Spain, 2022)	-	47.353.590	INE. 2022 ⁴
MDS incidence	0.004%	1.894	MDS guideline 2020 ¹
Low Risk MDS	77.00%	1.458	Greenberg et al. 2012 ⁵

MDS: Myelodysplastic syndromes

Figure 1. Markov health states

 Follow-up cost: tests and medical consultation costs were considered. This cost was estimated based on the frequency of use¹⁰ and unit cost¹¹. The cost/cycle was €758.63 for TD patients and €179.83 for TI patients.

- Transfusion cost: transfusion frequency has been based on transfusion regimen (high regimen: 20 transfusions/ 16 weeks; low regimen: 6/ 16 weeks or 2/ 16 weeks). A unit cost of €474.78 per transfusion was considered.
- Complications cost: the cost of acute complications was included based on the incidence of ERASME study³ and with experts' opinion (Table 5). It was assumed that acute complications require hospitalization, and this cost was extracted from the CMBD (Spanish healthcare database mandatory in public hospitals)¹².

Table 5. Incidence of complications over the 5-year time horizon

Complications	Unit cost ¹⁴	TD patient (%)	TI patient (%)	Resource
Infections	€2,672.38	42.2%	14.5%	
Haematomas/bleeding	€2,232.61	20.0%	6.5%	ERASME study Experts. 2022 ¹
Cardiovascular events	€3,680.73	20.0%	8.9%	

TD: transfusion- dependent; TI: transfusion- independent

Outcome measures

- Clinical benefit results: survival associated with LR-MDS was estimated. To this end, the life years (LYs) and the quality-adjusted life years (QALYs) gained over the 5-year time horizon were calculated. In addition, these results were extracted for TD patients and TI patients.
- **Cost results:** the cost of the LR-MDS over the 5-year time horizon and annual costs were estimated. In addition, these results were extracted for TD and TI patients.
- Sensitivity analysis: deterministic (DSA) and probabilistic sensitivity analyses (PSA) were performed to assess results robustness. Each parameter was varied individually in its confidence interval (CI95%) or

(Figure 5) compared to €12,558 per patient for TI (Figure 6).

Figure 5. Annual cost per patient in TD patients

Total/year	€46,895	€44,133 €	242,633	€41,398	€40,273
€50,000 €40,000 €30,000 €20,000 €10,000	€1,943 €7,958 €9,510 €27,484	€1,993 €7,460 €8,915 €25,765	€2,003 €7,193 €8,595 €24,842	€2,005 €6,974 €8,334 €24,085	€2,008 €6,774 €8,095 €23,396
ŧŪ	Year 1	Year 2	Year 3	Year 4	Year 5
Complic	cations cost	Transfusions cost	Follow	-up cost 🛛 🗖 Pharm	acological cost

Figure 6. Annual cost per patient in TI patients

Total/year	€13,397	€12,889	€12,508	€12,162	€11,835
€50,000					
€40,000					
€30,000					
€20,000	€303	€332	€361	€390	€420
€10,000	€2,277 €10 818	€2,183 €10,274	€2,112	€2,047 €0,725	€1,985
€0 -	210,010	10,374	£10,030	€9,725	€9,430
	Year 1	Year 2	Year 3	Year 4	Year 5
	Complicatio	ns cost 🛛 🗖 Fo	llow-up cost	Pharmacolog	gical cost

- The pharmacological cost accounts for most of the cost of LR-MDS (TD: 58.3% vs. TI: 80.2%)(Figure 7).
- In TD patients, transfusions accounted for 16.9% of the annual cost (Figure 7).

Figure 7. Cost distribution by cost item

Time horizon, cycle duration and discount rates

- A simulation was carried out over 5-year time horizon and one-month cycles.
- A 3% annual discount rate was used for costs and outcomes⁶.

Clinical parameters

- Transition probabilities were based on ERASME study³ and a literature review (**Table 2**):
- To MDS TI: data from the ERASME study³ were used. In particular, the probability of death was modelled based on the overall survival curve in TI patients.
- To MDS TD: the probability of death and progression to AML was modelled based on curves in TD patients collected from ERASME study³.

Table 2. Transition probabilities between health states

Transition probabilities	% per cycle (month)	Resource
From MDS TI to		
MDS TD*	0.48%	
AML	0.00%	ERASME study ³
Death	Overall survival curve-TI	
	population	
From MDS TD to		
AML	Progression curve to LMA	
Death	Overall survival curve-TD	ERASME study ³
	population	
From AML to		
Death	17.66%	Wahlin et al. 2001 ⁷
* In the EDACAAE study a total of 19 20	/ of TL patients received a transfusion is	n 42 months

assuming a $\pm 15\%$ variation from baseline. For the PSA, 500 Monte Carlo simulations have been carried out, each simulation varies all parameters according to their probability distribution.

RESULTS

- Based on an incident population, a total of 1,458 patients were analyzed
- The proportion of TD patients increased every year (Figure 2).

Figure 2. Annual distribution of patients in health states

- ^{*}Survival patients at the end of each year
- For the total population, 5,299 LY and 4,286 QALYs over 5 years were obtained, implying a 27.3% reduction in LYs and a 41.2% reduction in QALYs compared to a healthy population (**Table 6**).
- LR-MDS population accumulated a mean of 4.18 QALYs/patient.

Table 6. Clinical benefit results of total population

Outcome measure	Results		
Accumulative LYs over 5 years in LR-MDS population	5,299		
Reduction in LYs vs healthy population*	27.3%		
Accumulative QALYs over 5 years in LR-MDS population	4,286		
Reduction in QALYs vs healthy population*	41.2%		
* Assuming 5 years (7,290 for the total population analyzed) of LYs and OALYs in the healthy population			

- In addition, the DSA and PSA results confirmed the robustness of the results:
- DSA: was observed that the parameters that most influence cost results are the number of patients with LR-MDS and the pharmacological cost.
 Whereas the number of patients with LR-MDS and the utility value of the MDS-TI are the parameters that most influence the QALYs results.
- PSA: to 500 simulations it was found that mean costs and mean QALYs were similar to the results of the analysis (Table 7).

Table 7. PSA results

Outcome measure	Case base result	PSA result (mean)	CI95% (/	۸in;Max)
Accumulative QALYs over 5 years in LR-MDS population	4,286	4,275	3,135	5,415
Accumulative costs over 5 years in LR-MDS population	€105,582,606	€107,409,438	€83,445,158	€131,373,718
QALYs: Quality-adjusted life years; LR-MDS: Low risk myelodysplastic syndromes; Min: minimum; Max: Maximum				

Conclusions

- The clinical and economic burden associated with LR-MDS is substantial in Spain.
- In patients with transfusion dependence the clinical and economic burden is higher than in transfusion independent patients.

In the ERASME study a total of 18.2% of TI patients received a transfusion in 42 months

• Utility values were associated with each health state. These values were obtained from a systematic literature review (Table 3).

Table 3. Utilities values for each heath state

Health state	Utility value*	Resource	
MDS TI	0.56		
MDS TD	0.88	Sugrue. 2018 ⁸	
AML	0.57		
*Numerical scale 0 to 1, where 0 is the worst possible state of health (death) and 1 is a state of "perfect health"			

Numerical scale 0 to 1, where 0 is the worst possible state of health (death) and 1 is a state of "perfect health"

TD patients accumulated 2.64 QALYs/patient, while TI patients accumulated 4.15 QALYs/patient over 5 years time horizon (Figure 3).
TD patients accumulated 36.4% fewer QALYs than TI population (Figure 3).

Figure 3. Accumulate QALYs based to transfusion dependence

- A cumulative cost of €105,582,606 over the 5-year time horizon was estimated (Figure 4).
- The mean annual cost of LR-MDS was estimated at €21,116,521.

References

1. Grupo español de síndromes mielodisplásicos (GESMD). Guías Españolas de SMD y LMMC, Edición 2020. Accessed: March 2022. Available at: <u>https://www.gesmd.es/actividad-cientifica/guias-smd-y-lmmc-2/.</u> 2. Platzbecker U., et al. Blood. 2019;133(10):1020-30. DOI: 10.1182/blood-2018-06-857102 3. Montoro M. J., et al. Congreso Nacional de la SEHH / XXXVI Congreso Nacional de la SETH; 2020 Oct 22-24; Virtual congress 4. Instituto nacional de estadística (INE). Population projections 2022. Accessed: March 2022. Available at: https://www.ine.es/jaxiT3/Tabla.htm?t=36642&L=0 5. Greenberg PL, et al. Blood. 2012;120(12):2454-65. DOI: 10.1182/blood-2012-03-420489 6. López-Bastida J., et al. Eur J Heal Econ. 2010; 11(5):513-20. DOI: 10.1007/s10198-010-0244-4 7. Wahlin A., et al. Br J Haematol. 2001;115(1):25-33. DOI: <u>10.1046/j.1365-2141.2001.03043.x</u> 8. Sugrue D., et al. Value in Health. 2018;21:S254. DOI: <u>https://doi.org/10.1016/j.jval.2018.04.1713</u> 9. Bot Plus Web 2.0. Accessed: March 2022. Available at: <u>https://botplusweb.portalfarma.com</u> 10.Expert consultation 2022 11.Gisbert R., et al. eSalud [Internet]. Accessed: March 2022; Available at: http://www.oblikue.com/bddcostes/ 12. Statistical portal of the NHS. RAE-CMBD from 2016 onwards. Accessed: March 2022. Available at: https://pestadistico.inteligenciadegestion.mscbs.es/publicoSNS/N/rae-cmbd/rae-cmbd

Disclosure

- The study was supported by Bristol Myers Squibb.
- All authors contributed to and approved the presentation. Writing and editorial assistance were provided by Outcomes'10, funded by Bristol Myers Squibb.

Email: saceituno@outcomes10.com

Copies of this poster are for personal use only and may not be reproduced without written permission of the authors.